PMC Organometallix is a leading global producer of a broad portfolio of stannous (tin II), monobutyltin, dibutyltin, and dioctyltin catalysts under the FASCAT brand name. Our catalysts are globally recognized for consistent performance. Quality assurance drives our manufacturing processes and provides peace of mind to our customers. As long as proper procedures are followed, FASCAT catalysts will perform consistently, batch after batch, no matter where in the world they are utilized.

Electrocoat manufacturers trust FASCAT catalysts for the most exacting specifications for automotive and industrial resin and paste applications.

Ester manufacturers recognize FASCAT catalysts as superior to caustics and titanates due to overall lower manufacturing costs. Most applications require extremely low loading levels to achieve desired reaction rates.

FASCAT 2000 and 4100 series products are very high purity - offering manufacturers seeking to minimize dibutyltin (DBT) and tributyltin (TBT) confidence when it comes to meeting stringent regulatory standards.

PMC Organometallix has the global production and warehousing capacity to provide the FASCAT product you need when you need it. Visit FASCAT.com to see our list of global distributors.

FASCAT catalysts provide manufacturers of urethanes and siloxanes a cost-effective means of enhancing or varying cure speed and pot life.

About FASCAT® Catalysts

PMC’s broad portfolio of high purity tin catalysts is offered in packages ranging from pails to totes. Our outstanding customer service is aligned with global availability and industry-leading technical know-how. FASCAT catalysts are the world’s trusted, cost-effective solution for esterification, transesterification and urethane and siloxane cross-linking.

Your trusted performer

Your cost-effective solution

Your regulatory partner

Your global partner

Your formulating aide
FASCAT® Applications

FASCAT catalysts are effective for a wide variety of end-use applications. Many FASCAT catalysts behave as Lewis acids, making a wide range of synthetic chemistry possible. Listed below are typical uses.

FASCAT® catalysts are used in the production of:

Adhesives and Sealants
Adhesives and sealants rely on FASCAT catalysts to enhance curing properties. Both polyurethane and silicone-based chemistries are common applications in both 2K and 1K systems.

Biofuels and Synthetic Lubricants
Manufacturers seeking high yield and minimal side reactions use FASCAT catalysts to esterify the monomeric esters used for biofuels and synthetic lubricants. Solid and liquid catalysts are available and can be distilled or filtered from the finished products.

Foams
From mattresses to insulation, polyurethane foams are made from reacting polyether polyols or polyester polyols with isocyanate in the presence of a FASCAT catalyst and tertiary amine. PMC manufactures two primary products for foam production. Contact our experts for special selectivity or VOC requirements.

Plasticizers
FASCAT catalysts are used to manufacture phthalate esters, in particular dioctyl phthalate (DIOP) esters. These high molecular weight phthalate esters are used as plasticizers in a wide variety of end uses from enteric coatings of pharmaceuticals, to viscosity control agents, film formers, suspending agents, personal-care products, and soft plastics.

Unsaturated Polyester Resins
FASCAT catalysts are used to manufacture polyester resins that are used to manufacture composites.

Use our product selector tool at www.FASCAT.com to find out which FASCAT catalysts best meet your needs.
FASCAT® Product Portfolio

Highly selective catalysts for esters, urethanes, and siloxanes

<table>
<thead>
<tr>
<th>Product</th>
<th>CAS #</th>
<th>Chemical Name(s)</th>
<th>Product Description</th>
<th>Chemical Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>FASCAT 2001</td>
<td>814-94-8</td>
<td>Stannous oxalate</td>
<td>White to off-white solid powder, Production of monomeric and polymeric plasticizers, fatty acid esters, and synthetic lubricants, Removable from final ester by filtration</td>
<td></td>
</tr>
<tr>
<td>FASCAT 2003</td>
<td>301-10-0</td>
<td>Stannous bis (2-ethylhexanoate) also known as Stannous octoate</td>
<td>Pale yellow liquid, Production of oleochemicals and silanol condensation reactions, Urethane cross-linking, Urethane foam gelling</td>
<td></td>
</tr>
<tr>
<td>FASCAT 2004</td>
<td>7772-99-8</td>
<td>Stannous dichloride</td>
<td>Solid white to off-white flaked material, Esterification catalysts, Removable from final ester by filtration, Used in tin plating and other metal finishing</td>
<td></td>
</tr>
<tr>
<td>FASCAT 4100</td>
<td>2273-43-0</td>
<td>Monobutyltin oxide also known as Butyl stannoic acid</td>
<td>Amorphous white solid for transesterification and esterification, Hydrolytically stable, Versatile, neutral catalyst, Extremely pure with low levels of DBT and TBT contamination</td>
<td></td>
</tr>
<tr>
<td>FASCAT 4101</td>
<td>13355-96-9</td>
<td>Monobutyltin dihydroxychloride</td>
<td>Amorphous white solid for transesterification and esterification, Hydrolytically stable, Soluble in several solvents, NaOH, HNO3, Extremely pure with low levels of DBT and TBT contamination</td>
<td></td>
</tr>
<tr>
<td>FASCAT 4102</td>
<td>23850-94-4</td>
<td>Monobutyltin tris (2-ethylhexanoate)</td>
<td>Pale yellow liquid, Esterifications of aromatic polyester polyols, Ring opening polymerization, Plasticizers, including diocyl phthalate</td>
<td></td>
</tr>
<tr>
<td>FASCAT 4200</td>
<td>1067-33-0</td>
<td>Dibutyltin diacetate</td>
<td>Clear, colorless to pale yellow liquid, Silanol condensation reactions for caulk and sealant applications, Production of blocked isocyanates, Cross-link urethane coating systems, Transesterifications</td>
<td></td>
</tr>
<tr>
<td>FASCAT 4201</td>
<td>818-08-6</td>
<td>Dibutyltin oxide</td>
<td>Amorphous white solid, Transesterification catalyst for methacrylate esters, High temperature transesterification reactions for coating resins, Cross-linking electrocoat resins and pastes, Finely ground available - FASCAT 4203</td>
<td></td>
</tr>
<tr>
<td>FASCAT 4202</td>
<td>77-58-7</td>
<td>Dibutyltin dilaurate</td>
<td>Yellow amber, oily liquid, Cross-link two-component urethane coating systems, Cross-link RTV silicone systems, Cross-link polyethylene/silane (PEX) co-polymer systems, Gelling catalyst of flexible and rigid polyurethane foams</td>
<td></td>
</tr>
<tr>
<td>FASCAT 4208X</td>
<td>2781-10-4</td>
<td>Dibutyltin bis (2-ethylhexanoate) in xylene (50 wt%)</td>
<td>White to straw liquid, Silanol/silicone condensation reactions</td>
<td></td>
</tr>
<tr>
<td>FASCAT 4210</td>
<td>63-18-1</td>
<td>Dibutyltin dichloride</td>
<td>White crystalline solid, Intermediate for producing dibutyltin compounds, Precursor for glass coating, Reactive additive for synthetic rubber to improve carbon black dispersibility</td>
<td></td>
</tr>
</tbody>
</table>
FASCAT catalysts can have a 1 or 2 year shelf life as indicated at room temperature in an unopened container. Shelf life is determined based on manufacture date or recertification date as indicated on the certificate of analysis (CoA).

<table>
<thead>
<tr>
<th>Product</th>
<th>CAS #</th>
<th>Chemical Name(s)</th>
<th>Product Description</th>
<th>Chemical Structure</th>
</tr>
</thead>
</table>
| FASCAT 4224 | 68298-38-4 | Dibutyltin bis (1-thioglyceride) | • Clear to light colored liquid
• Highly selective for polyurethane systems.
• Hydrolytic stability for waterborne coatings and adhesives
• Formulations needing long pot life at room temperature, quick cure at elevated temperatures | ![Chemical Structure](attachment:image1.png) |
| FASCAT 4233 | Proprietary | Butyltin mercaptide | • Light amber oily liquid
• Synthesis and curing of polyurethanes
• Delayed action cure compared to organotin carboxylates | Proprietary |
| FASCAT 4350 | Proprietary | Butyltin oxide | • Amorphous white powder
• Alkyd resins → alcoholisis and esterification steps
• 20% to 25% reduction in reaction time as well as improved color and haze compared to lithium catalyzed systems | Proprietary |
| FASCAT 4351 | 76-87-9 | Triphenyltin hydroxide | • White powder
• Commonly used in fungicides
• Acid-epoxy reactions | ![Chemical Structure](attachment:image2.png) |
| FASCAT 4400 | 7646-78-8 | Tin tetrachloride also known as Stannic chloride | • Clear to yellow, fuming liquid
• Chloromethylation and reaction of epichlorohydrin with alcohols to form glycidyl ethers
• Organic synthesis | ![Chemical Structure](attachment:image3.png) |
| FASCAT 8201 | 870-08-6 | Dioctyltin oxide | • Amorphous white solid
• Transesterifications
• Cross-linking electrocoat resins and pastes
• Slightly less reactive than DBTO, but fewer regulatory restrictions
• Finely ground available - FASCAT 8203 | ![Chemical Structure](attachment:image4.png) |
| FASCAT 8202 | 3648-18-8 | Dioctyltin dilaurate | • Yellow amber, oily liquid
• A versatile catalyst used in various urethan cross-linking reactions and silanol condensation reactions | ![Chemical Structure](attachment:image5.png) |
| FASCAT 9100 | 2273-43-0 | Monobutyltin oxide also known as Butyl stannoic acid (Food Grade) | • FDA grade of FASCAT 4100 that satisfies 21 CFR 175.300, 21 CFR 177.2420, and 21 CFR 175.105. | ![Chemical Structure](attachment:image6.png) |
| FASCAT 9102 | 23850-94-4 | Monobutyltin tris (2-ethylhexanoate) (Food Grade) | • FDA grade version of FASCAT 4102 used in cross-linked polyester resins for food contact articles intended for repeated use under 21 CFR Sec. 177.2420(b)3.
• The maximum amount of catalyst cannot exceed 0.2 percent of the polyester resin under 21 CFR Sec. 175.300. | ![Chemical Structure](attachment:image7.png) |
| FASCAT 9201 | 818-08-6 | Dibutyltin oxide (Food Grade) | • FASCAT 9201 is the food grade version of FASCAT 4201 that satisfies 21 CFR 175.300, 21 CFR 177.2420, and 21 CFR 175.105. | ![Chemical Structure](attachment:image8.png) |

Full Descriptions and Technical Data Sheets Are Available at www.FASCAT.com
Product Stewardship for FASCAT® Catalysts
PMC will help you navigate the facts and regulations for organotin products

Tin (Sn) in its elemental form, CAS 7440-31-5, has a silvery or gray appearance. Tin is commonly extracted from the mineral cassiterite, and is nontoxic.

Uses of tin go back 3000 years when it was commonly mixed with copper to make bronze, which remains a widely used alloy today. When tin is used to form organometallic complexes, a wide range of toxicities can be observed. Some species are toxic while others have low toxicities.

What do you need to know regarding the use of FASCAT tin catalysts?

FASCAT catalysts are not Substances of Very High Concern (SVHC). Although FASCAT 4200 and 8200 series catalysts have REACH* restrictions, they are generally effective at catalyzing reactions at levels below the 0.1% REACH threshold equivalent weight of tin.

Navigating the regulatory environment around the world can be tough – let our experts help guide you!

How does REACH* specifically impact organotins?

Organotin compounds cannot be used as biocides in free association paint, as antifouling agents for submerged items, or for industrial water treatment.

Tri-substituted organostannic compounds, such as tributyltin (TBT) compounds and triphenyltin (TPT), and dibutyltin (DBT) compounds are limited to 0.1% by weight of tin in consumer products.

Similarly, dioctyltin (DOT) compounds are limited to 0.1% by weight of tin in articles that would come in contact with the skin (gloves, footwear, nappies, floor coverings etc.).

Other REACH registered tin compounds are not restricted.

For additional information regarding our FASCAT product stewardship, ask our experts at www.FASCAT.com/ask-the-expert/ or email us at regulatory@fascat.com

* Regulation, Evaluation, Authorization & Restriction of Chemicals
1 Regulation (EC) No 1907/2006 and COMMISSION REGULATION (EU) No 276/2010
FASCAT® Catalysts Help to Provide Renewable Energy

With applications in the wind turbine industry, FASCAT catalysts assist in the creation of environmentally-friendly energy solutions.

FASCAT 2000 & 4000 Series
Used for esterification of synthetic lubricants for mechanical systems

FASCAT 4100 & 4200 Series
Used in unsaturated polyester resin production for composites, gelcoat resin production, and for urethane topcoat curing

FASCAT 4100 & 4200 Series
Used for coatings resin production and urethane topcoat curing

For more information on our FASCAT® catalysts and their applications,
Visit our website at www.FASCAT.com
About PMC Group

PMC Group is a growth oriented, diversified, global chemicals company dedicated to innovative solutions to everyday needs in a broad range of end markets including plastics, consumer products, electronics, paints, packaging, personal care, food, automotive and pharmaceuticals. The Company was built on a sustainable model of growth through innovation while promoting social good. Dedicated to sustainability, PMC operates from a global manufacturing, innovation and marketing platform with facilities and personnel in the Americas, Europe and Asia.

Today, through a combination of innovative organic growth coupled with strategic acquisitions, PMC has become a global organization with manufacturing, research and marketing organizations throughout the world all fueled by continuous innovation and a dedication to unassailable quality, service and safety of our people and the environment.

PMC Organometallix
2316 Highland Ave
Carrollton, KY 41008
USA
+1 855 638 2549 or +1 856 638 2157
www.pmcorganometallix.com

PMC Beijing Chemical Co., Ltd.
No. 1, Wutong Road
Tongzhou Industrial Development Zone
Tongzhou District, 101113 Beijing
CHINA
+86 10 6156 4749 ext. 804